Aleph-w 3.0
A C++ Library for Data Structures and Algorithms
Loading...
Searching...
No Matches
Aleph::List_Graph< _Graph_Node, _Graph_Arc > Class Template Reference

Graph implemented with double-linked adjacency lists. More...

#include <tpl_graph.H>

Inheritance diagram for Aleph::List_Graph< _Graph_Node, _Graph_Arc >:
[legend]
Collaboration diagram for Aleph::List_Graph< _Graph_Node, _Graph_Arc >:
[legend]

Classes

struct  Arc_Iterator
 Iterator on all arcs of a graph. More...
 
class  Node_Arc_Iterator
 Iterator on the arcs of a graph. More...
 
struct  Node_Iterator
 Node iterator. More...
 

Public Types

using GT = List_Graph
 
using Node = _Graph_Node
 The graph type.
 
using Arc = _Graph_Arc
 The node class type.
 
using Node_Type = typename Node::Node_Type
 The arc class type.
 
using Arc_Type = typename Arc::Arc_Type
 The type of data stored in the arc.
 
using CommonBase = GraphCommon< List_Graph< _Graph_Node, _Graph_Arc >, _Graph_Node, _Graph_Arc >
 
- Public Types inherited from GraphCommon< GT, Node, Arc >
using Node_Type = typename Node::Node_Type
 
using Arc_Type = typename Arc::Arc_Type
 
using ArcPair = std::tuple< Arc *, Node * >
 Pair of arc and node (topologically related)
 

Public Member Functions

Dlinkget_node_dlink () noexcept
 Return a reference to the internal node Dlink for sorting.
 
Dlinkget_arc_dlink () noexcept
 Return a reference to the internal arc Dlink for sorting.
 
virtual Nodeinsert_node (Node *node) noexcept
 Insertion of a node already allocated.
 
virtual void remove_node (Node *node) noexcept
 Remove a node from the graph and free its memory.
 
Nodeget_first_node () const
 Return any node in the graph.
 
Arcget_first_arc (Node *node) const
 Return any arc adjacent to a node.
 
virtual void remove_arc (Arc *arc) noexcept
 Remove an arc from the graph and free it.
 
virtual void disconnect_arc (Arc *arc) noexcept
 Disconnect an arc from graph.
 
virtual Arcconnect_arc (Arc *arc) noexcept
 Connect a previously disconnected arc to the graph.
 
Arcget_first_arc () const
 Return any arc in the graph.
 
 List_Graph (const List_Graph &g)
 Copy constructor.
 
 List_Graph (List_Graph &&g) noexcept
 Move constructor.
 
List_Graphoperator= (const List_Graph &g)
 Copy assignment.
 
List_Graphoperator= (List_Graph &&g) noexcept
 Move assignment.
 
virtual ~List_Graph ()
 Destructor: all the nodes and arcs and removed and freed.
 
 List_Graph ()=default
 Construct an empty graph.
 
void swap (List_Graph &g) noexcept
 Swap in constant time this with g
 
Nodeinsert_node (const Node_Type &node_info)
 Allocate a new node, set by copy its data content and insert it into the graph.
 
Nodeinsert_node (Node_Type &&node_info=Node_Type())
 Allocate a new node, set by moving its data content and insert it into the graph.
 
Arcinsert_arc (Node *src, Node *tgt, const Arc_Type &arc_info)
 Create and insert a new arc linking two nodes and copying data.
 
Arcinsert_arc (Node *src, Node *tgt, Arc_Type &&arc_info=Arc_Type())
 Create and insert a new arc linking two nodes and moving the received data.
 
- Public Member Functions inherited from GraphCommon< GT, Node, Arc >
void *& get_cookie () noexcept
 Return a modifiable reference to graph's cookie.
 
void * get_cookie () const noexcept
 Return a constant reference to graph's cookie.
 
bool is_digraph () const noexcept
 Return true if the graph this is directed.
 
void set_digraph (bool val)
 Temporal indication for preventing to other algorithms that an graph must be treated as a directed graph.
 
constexpr size_t get_num_nodes () const noexcept
 Return the total of nodes of graph.
 
constexpr size_t vsize () const noexcept
 
Nodeget_node () const
 Return any node in the graph.
 
Nodeget_arc () const
 Return any arc in the graph.
 
Nodeget_arc (Node *p)
 Return any arc adjacent to a node.
 
Nodeget_src_node (Arc *arc) const noexcept
 Return the source node of arc (only for directed graphs)
 
Nodeget_tgt_node (Arc *arc) const noexcept
 Return the target node of arc (only for directed graphs)
 
Nodeget_connected_node (Arc *arc, Node *node) const noexcept
 Return the adjacent node to node through arc.
 
constexpr size_t get_num_arcs () const noexcept
 
size_t get_num_arcs (Node *node) const noexcept
 Return the total of arcs of a node.
 
size_t degree (Node *p) const noexcept
 Return the total of arcs (or degree) of a node.
 
size_t esize () const noexcept
 Return the total of arcs of graph.
 
Bit_Fields & get_control_bits (Node *node) const noexcept
 Return a reference to control fields of node
 
void reset_bit (Node *node, int bit) const noexcept
 Reset the bit of node (to zero)
 
void reset_bits (Node *node) const noexcept
 Reset all the control bits of node
 
int get_bit (Node *node, int bit) const noexcept
 Get the control bit of node
 
void set_bit (Node *node, int bit, int value) const noexcept
 Set the control bit of node to value
 
Bit_Fields & get_control_bits (Arc *arc) const noexcept
 Return a reference to the control bits of arc
 
void reset_bit (Arc *arc, int bit) const noexcept
 Reset the bit of arc to zero.
 
void reset_bits (Arc *arc) const noexcept
 Reset all the control bits of arc
 
int get_bit (Arc *arc, int bit) const noexcept
 Get the control bit of arc
 
void set_bit (Arc *arc, int bit, int value) const noexcept
 Set the control bit of arc to value
 
void *& get_cookie (Node *node) const noexcept
 Get a modifiable reference to the cookie pointer of node
 
void *& get_cookie (Arc *arc) const noexcept
 Get a modifiable reference to the cookie pointer of arc
 
long & get_counter (Node *node) const noexcept
 Get a modifiable reference to the counter of node
 
void reset_counter (Node *node) const noexcept
 Reset the node counter to zero.
 
void reset_node_counters () const noexcept
 Reset all the node counters of graph to zero.
 
void reset_node (Node *p) const noexcept
 Reset all the control attributes of node p.
 
long & get_counter (Arc *arc) const noexcept
 Get a modifiable reference to the counter of arc
 
void reset_counter (Arc *arc) const noexcept
 Reset the acr counter to zero.
 
void reset_arc_counters () const noexcept
 Reset all the arc counters of graph to zero.
 
void reset_arc (Arc *arc) const noexcept
 Reset all the control attributes of arc.
 
void reset_nodes () const
 Reset all the nodes of graph (the control bits, the state, the counter and the cookie)
 
void reset_arcs () const
 Reset all the arcs of graph (the control bits, the state, the counter and the cookie)
 
void reset_bit_nodes (int bit) const noexcept
 Reset bit to zero for all the nodes of graph.
 
void reset_bit_arcs (int bit) const noexcept
 Reset bit to zero for all the arcs of graph.
 
void reset_bit_nodes () const noexcept
 Reset all the bits for all the nodes of graph.
 
void reset_bit_arcs () const noexcept
 Reset all the bits for all the arcs of graph.
 
void reset_counter_nodes () const noexcept
 Reset all the counters to zero for all the nodes of graph.
 
void reset_counter_arcs () const noexcept
 Reset all the counters to zero for all the arcs of graph.
 
void reset_cookie_nodes () const noexcept
 Reset all the cookies to `nullptr for all the nodes of graph.
 
void reset_cookie_arcs () const noexcept
 Reset all the cookies to `nullptr for all the arcs of graph.
 
Nodeinsert_node (const Node_Type &node_info)
 Allocate a new node, set by copy its data content and insert it into the graph.
 
Nodeinsert_node (Node_Type &&node_info=Node_Type())
 Allocate a new node, set by moving its data content and insert it into the graph.
 
template<typename... Args>
Nodeemplace_node (Args &&... args)
 Insert a new node in the graph by constructing it in-place with the given args.
 
Arcinsert_arc (Node *src, Node *tgt, const Arc_Type &arc_info)
 Create and insert a new arc linking two nodes and copying data.
 
Arcinsert_arc (Node *src, Node *tgt, Arc_Type &&arc_info=Arc_Type())
 Create and insert a new arc linking two nodes and moving the received data.
 
template<typename... Args>
Arcemplace_arc (Node *src, Node *tgt, Args &&... args)
 Insert a new arc in the graph by constructing its associated data in-place with the given args.
 
template<class Operation >
bool traverse_nodes (Operation &op) const
 Conditioned traversal of all the nodes of a graph.
 
template<class Operation >
bool traverse_nodes (Operation &&op=Operation()) const
 Overload of traverse_nodes(Operation&) that accepts rvalues.
 
template<class Operation >
bool traverse_arcs (Operation &op) const
 Conditioned traversal of all the arcs of a graph.
 
template<class Operation >
bool traverse_arcs (Operation &&op=Operation()) const
 Overload of traverse_arcs(Operation&) that accepts rvalues.
 
template<class Operation >
bool traverse_arcs (Node *p, Operation &op) const
 Conditioned traversal of all the adjacent arcs of a node.
 
template<class Operation >
bool traverse_arcs (Node *p, Operation &&op=Operation()) const
 Overload of traverse_arcs(Node*, Operation&) that accepts rvalues.
 
template<class Operation >
void for_each_node (Operation &operation) const
 Unconditionally traverse all the nodes of graph and on each one perform an operation.
 
template<class Operation >
void for_each_node (Operation &&operation=Operation()) const
 Overload of for_each_node(Operation&) that accepts rvalues.
 
template<class Operation >
void for_each_arc (Operation &op) const
 Unconditionally traverse all the arcs of graph and on each one perform an operation.
 
template<class Operation >
void for_each_arc (Operation &&operation=Operation()) const
 Overload of for_each_arc(Operation&) that accepts rvalues.
 
template<class Operation >
void for_each_arc (Node *p, Operation &op) const
 Unconditionally traverse all the arcs adjacnt to a node and on each one perform an operation.
 
template<class Operation >
void for_each_arc (Node *p, Operation &&op=Operation()) const
 Overload of for_each_arc(Node*, Operation&) that accepts rvalues.
 
template<class Operation >
bool all_nodes (Operation &op) const
 Check if all the nodes of graph satisfy an boolean condition.
 
template<class Operation >
bool all_nodes (Operation &&op=Operation()) const
 Overload of all_nodes(Operation&) that accepts rvalues.
 
template<class Operation >
bool all_arcs (Operation &op) const
 Check if all the arcs of graph satisfy a boolean condition.
 
template<class Operation >
bool all_arcs (Operation &&op=Operation()) const
 Overload of all_arcs(Operation&) that accepts rvalues.
 
template<class Operation >
bool all_arcs (Node *p, Operation &op) const
 Check if all the arcs adjacent to a node satisfy an boolean condition.
 
template<class Operation >
bool all_arcs (Node *p, Operation &&op=Operation()) const
 Overload of all_arcs(Node*, Operation&) that accepts rvalues.
 
template<typename T = Node_Type>
auto nodes_map (std::function< T(Node *)> op) const
 Map the nodes of a graph to a specific range.
 
template<typename T = Arc_Type>
auto arcs_map (std::function< T(Arc *)> operation) const
 Map the arcs of a graph to a specific range.
 
template<typename T = Arc_Type>
auto arcs_map (Node *p, std::function< T(Arc *)> operation) const
 Map the adjacent arcs of a node to a specific range.
 
template<typename T = Node_Type>
foldl_nodes (const T &init, std::function< T(const T &, Node *)> op) const
 Folding of nodes on a graph.
 
template<typename T = Arc_Type>
foldl_arcs (const T &init, std::function< T(const T &, Arc *)> op) const
 Folding of arcs on a graph.
 
template<typename T = Arc_Type>
foldl_arcs (Node *p, const T &init, std::function< T(const T &, Arc *)> op) const
 Folding of arcs of a node.
 
template<class Op >
auto filter_nodes (Op &op) const
 Filter the nodes satisfying a condition.
 
template<class Op >
auto filter_nodes (Op &&op) const
 Overload of filter_nodes(Op&) that accepts rvalues.
 
template<class Op >
auto filter_arcs (Op &op) const
 Filter the arcs of graph satisfying a condition.
 
template<class Op >
auto filter_arcs (Op &&op) const
 Overload of filter_arcs(Op&) that accepts rvalues.
 
template<class Op >
auto filter_arcs (Node *p, Op &op) const
 Filter the arcs adjacent to a node satisfying a condition.
 
template<class Op >
auto filter_arcs (Node *p, Op &&op) const
 Overload of filter_arcs(Node*, Op&) that accepts rvalues.
 
template<class Operation >
bool exists_node (Operation &op) const
 Determine if exists at least a node satisfying a condition.
 
template<class Operation >
bool exists_node (Operation &&op=Operation()) const
 Overload of exists_node(Operation&) that accepts rvalues.
 
template<class Operation >
bool exists_arc (Operation &op) const
 Determine if exists at least a arc satisfying a condition.
 
template<class Operation >
bool exists_arc (Operation &&op=Operation()) const
 Overload of exists_arc(Operation&) that accepts rvalues.
 
template<class Operation >
bool exists_arc (Node *p, Operation &op) const
 Determine if exists at least a arc adjacent to a node satisfying a condition.
 
template<class Operation >
bool exists_arc (Node *p, Operation &&op=Operation()) const
 Overload of exists_arc(Node*, Operation&) that accepts rvalues.
 
template<class Operation >
bool none_node (Operation &op) const
 Determine if no node satisfies a condition.
 
template<class Operation >
bool none_node (Operation &&op) const
 Overload of none_node(Operation&) that accepts rvalues.
 
template<class Operation >
bool none_arc (Operation &op) const
 Determine if no arc satisfies a condition.
 
template<class Operation >
bool none_arc (Operation &&op) const
 Overload of none_arc(Operation&) that accepts rvalues.
 
template<class Operation >
bool none_arc (Node *p, Operation &op) const
 Determine if no arc adjacent to a node satisfies a condition.
 
template<class Operation >
bool none_arc (Node *p, Operation &&op) const
 Overload of none_arc(Node*, Operation&) that accepts rvalues.
 
template<class Operation = std::function<bool(Node*)>>
size_t count_nodes (Operation op=[](Node *) { return true;}) const
 Count the nodes satisfying a condition.
 
template<class Operation = std::function<bool(Arc*)>>
size_t count_arcs (Operation op=[](Arc *) { return true;}) const
 Count the arcs satisfying a condition.
 
template<class Operation = std::function<bool(Arc*)>>
size_t count_arcs (Node *p, Operation op=[](Arc *) { return true;}) const
 Count arcs adjacent to a node satisfying a condition.
 
template<typename T = double, class Extract >
sum_arcs (Node *p, Extract extract) const
 Sum values derived from arcs adjacent to a node.
 
template<typename T = double>
sum_arcs (Node *p) const
 Overload of sum_arcs(Node*, Extract) using the arc info as extractor.
 
template<class Compare = std::function<bool(Arc*, Arc*)>>
Arcmin_arc (Node *p, Compare cmp=[](Arc *a, Arc *b) { return a->get_info()< b->get_info();}) const
 Find the minimum arc adjacent to a node.
 
template<class Compare = std::function<bool(Arc*, Arc*)>>
Arcmax_arc (Node *p, Compare cmp=[](Arc *a, Arc *b) { return a->get_info()< b->get_info();}) const
 Find the maximum arc adjacent to a node.
 
template<class Compare = std::function<bool(Arc*, Arc*)>>
Arcmin_arc (Compare cmp=[](Arc *a, Arc *b) { return a->get_info()< b->get_info();}) const
 Find the minimum arc in the entire graph.
 
template<class Compare = std::function<bool(Arc*, Arc*)>>
Arcmax_arc (Compare cmp=[](Arc *a, Arc *b) { return a->get_info()< b->get_info();}) const
 Find the maximum arc in the entire graph.
 
template<class Operation >
std::pair< DynList< Node * >, DynList< Node * > > partition_nodes (Operation op) const
 Partition nodes into two groups based on a predicate.
 
template<class Operation >
std::pair< DynList< Arc * >, DynList< Arc * > > partition_arcs (Operation op) const
 Partition arcs into two groups based on a predicate.
 
DynList< Node * > adjacent_nodes (Node *p) const
 Get all adjacent nodes (neighbors) of a node.
 
template<class Op >
Nodesearch_node (Op &op) const
 Linear search of a node.
 
template<class Op >
Nodesearch_node (Op &&op) const
 Overload of search_node(Op&) that accepts rvalues.
 
Nodefind_node (const Node_Type &info) const noexcept
 Find a node mathing a content.
 
template<class Op >
Arcsearch_arc (Op &op) const
 Linear search of an arc.
 
template<class Op >
Arcsearch_arc (Op &&op) const
 Overload of search_arc(Op&) that accepts rvalues.
 
Arcfind_arc (const Arc_Type &info) const noexcept
 Find an arc mathing a content.
 
template<class Operation >
Arcsearch_arc (Node *p, Operation &op) const
 Linear search of an arc.
 
template<class Operation >
Arcsearch_arc (Node *p, Operation &&op=Operation()) const
 Overload of search_arc(Node*, Operation&) that accepts rvalues.
 
Arcsearch_arc (Node *src, Node *tgt) const noexcept
 Search an arc linking two nodes.
 
template<template< typename > class Container = Aleph::DynList>
Container< Node * > nodes () const
 Return a container with all the nodes of the graph.
 
template<template< typename > class Container = Aleph::DynList>
Container< Arc * > arcs () const
 Return a container with all the arcs of the graph.
 
template<template< typename > class Container = Aleph::DynList>
Container< Arc * > arcs (Node *p) const
 Return a container with all the arcs adjacent to a node.
 
auto get_node_it () const noexcept
 Obtains an iterator to the nodes of graph.
 
auto get_arc_it () const noexcept
 Obtains an iterator to the arc of graph.
 
auto get_arc_it (Node *p) const noexcept
 Obtains an iterator to the adjacent arcs of a node.
 
In_Iterator get_in_it (Node *p) const noexcept
 Return an input iterator on the incoming arcs to p
 
Out_Iterator get_out_it (Node *p) const noexcept
 Return an output iterator on the incoming nodes to p
 
Arcsearch_directed_arc (Node *src, Node *tgt) const noexcept
 Search a directed arc linking two nodes.
 
DynList< Node * > in_nodes (Node *p) const
 Return a list with the incoming nodes to p
 
DynList< Node * > out_nodes (Node *p) const
 Return a list with the outcoming nodes to p
 
DynList< Arc * > out_arcs (Node *p) const
 Return a list with the outcoming arcs to p`.
 
DynList< Arc * > in_arcs (Node *p) const
 Return a list with the incoming arcs to p`.
 
auto in_pairs (Node *p) const
 Return a list of pair incoming arcs and nodes.
 
auto out_pairs (Node *p) const
 Return a list of pair outcoming arcs and nodes.
 
size_t in_degree (Node *p) const noexcept
 Compute the input degree of a node.
 
size_t out_degree (Node *p) const noexcept
 Compute the output degree of a node.
 
template<class Itor , class Operation >
bool traverse_arcs (Node *p, Operation &op) const
 Traverse of arcs of a node according to specific arcs iterator.
 
template<class Itor , class Operation >
void for_each_arc (Node *p, Operation &op) const
 Perform op on each arc of node p
 
template<class Op >
bool traverse_in_arcs (Node *p, Op &op) const
 Traverse the incoming arcs of node p executing the conditioned operation
 
template<class Op >
bool traverse_in_arcs (Node *p, Op &&op=Op()) const
 Overload of traverse_in_arcs(Node*, Op&) that accepts rvalues.
 
template<class Op >
void for_each_in_arc (Node *p, Op &op) const
 Perform op on each incoming arc of node p
 
template<class Op >
void for_each_in_arc (Node *p, Op &&op=Op()) const
 Overload of for_each_in_arc(Node*, Op&) that accepts rvalues.
 
template<class Op >
bool all_in_arcs (Node *p, Op &op) const
 Return true if op is true for all the incoming arcs to node p
 
template<class Op >
bool all_in_arcs (Node *p, Op &&op=Op()) const
 Overload of all_in_arcs(Node*, Op&) that accepts rvalues.
 
template<class Op >
bool exists_in_arc (Node *p, Op &op) const
 Return true if it exists a incoming arc to p returning true for op
 
template<class Op >
bool exists_in_arc (Node *p, Op &&op=Op()) const
 Overload of exists_in_arc(Node*, Op&) that accepts rvalues.
 
template<class Op >
auto search_in_arc (Node *p, Op &op) const
 Search an incoming arc to a node satisfaying a condition.
 
template<class Op >
auto search_in_arc (Node *p, Op &&op=Op()) const
 Overload of search_in_arc(Node*, Op&) that accepts rvalues.
 
template<typename T >
auto in_arcs_map (Node *p, std::function< T(Arc *)> op) const
 Return a list of incoming arcs of a node mapped to items of type given by transformation op.
 
template<typename T = Arc_Type>
foldl_in_arcs (Node *p, const T &init, std::function< T(const T &, Arc *)> op) const
 Fold the incoming arcs of a node.
 
template<class Op >
DynList< Arc * > filter_in_arcs (Node *p, Op &op) const
 Filter the incoming arcs of a node.
 
template<class Op >
auto filter_in_arcs (Node *p, Op &&op=Op()) const
 Overload of filter_in_arcs(Node*, Op&) that accepts rvalues.
 
template<class Op >
bool traverse_out_arcs (Node *p, Op &op) const
 Traverse the outcoming arcs of node p executing the conditioned operation
 
template<class Op >
bool traverse_out_arcs (Node *p, Op &&op=Op()) const
 Overload of traverse_out_arcs(Node*, Op&) that accepts rvalues.
 
template<class Op >
void for_each_out_arc (Node *p, Op &op) const
 Perform op on each outcoming arc of node p
 
template<class Op >
void for_each_out_arc (Node *p, Op &&op=Op()) const
 Overload of for_each_out_arc(Node*, Op&) that accepts rvalues.
 
template<class Op >
bool all_out_arcs (Node *p, Op &op) const
 Return true if op is true for all the outcoming arcs to node p
 
template<class Op >
bool all_out_arcs (Node *p, Op &&op=Op()) const
 Overload of all_out_arcs(Node*, Op&) that accepts rvalues.
 
template<class Op >
bool exists_out_arc (Node *p, Op &op) const
 Return true if it exists a outcoming arc to p returning true for op
 
template<class Op >
bool exists_out_arc (Node *p, Op &&op=Op()) const
 Overload of exists_out_arc(Node*, Op&) that accepts rvalues.
 
template<class Op >
auto search_out_arc (Node *p, Op &op) const
 Search an outcoming arc to a node satisfaying a condition.
 
template<class Op >
auto search_out_arc (Node *p, Op &&op=Op()) const
 Overload of search_out_arc(Node*, Op&) that accepts rvalues.
 
template<typename T = Arc_Type>
auto out_arcs_map (Node *p, std::function< T(Arc *)> op) const
 Return a list of outcoming arcs of a node mapped to items of type given by transformation op.
 
template<typename T = Arc_Type>
foldl_out_arcs (Node *p, const T &init, std::function< T(const T &, Arc *)> op) const
 Fold-left over outcoming arcs of a node.
 
template<class Op >
DynList< Arc * > filter_out_arcs (Node *p, Op &op) const
 Filter the outcoming arcs of a node.
 
template<class Op >
auto filter_out_arcs (Node *p, Op &&op=Op()) const
 Overload of filter_out_arcs(Node*, Op&) that accepts rvalues.
 
template<class Compare >
requires (has_node_dlink_v<GT>)
void sort_nodes (Compare &cmp) noexcept
 
template<class Compare >
requires (has_node_dlink_v<GT>)
void sort_nodes (Compare &&cmp=Compare()) noexcept
 
template<class Compare >
requires (has_arc_dlink_v<GT>)
void sort_arcs (Compare &cmp) noexcept
 Sort all the arcs of the graph according to a specific criteria.
 
template<class Compare >
requires (has_arc_dlink_v<GT>)
void sort_arcs (Compare &&cmp=Compare()) noexcept
 

Private Member Functions

Arcinsert_arc (Node *src_node, Node *tgt_node, void *a)
 

Static Private Member Functions

static Nodedlink_to_node (Dlink *p) noexcept
 
static Arcdlink_to_arc (Dlink *p) noexcept
 
static Arc_Nodedlink_to_arc_node (Dlink *p) noexcept
 
static Arcvoid_to_arc (Arc_Node *arc_node) noexcept
 

Private Attributes

Dlink node_list
 
Dlink arc_list
 

Friends

class GraphCommon< List_Graph< _Graph_Node, _Graph_Arc >, _Graph_Node, _Graph_Arc >
 

Additional Inherited Members

- Static Public Member Functions inherited from GraphCommon< GT, Node, Arc >
template<class N1 , class N2 = N1>
static void map_nodes (N1 *p, N2 *q) noexcept
 Map the nodes through their cookies.
 
template<class A1 , class A2 = A1>
static void map_arcs (A1 *p, A2 *q) noexcept
 Map the arcs through their cookies.
 
- Static Public Attributes inherited from GraphCommon< GT, Node, Arc >
template<class U >
static constexpr bool has_node_dlink_v
 Sort all the nodes of the graph according to a specific criteria.
 
template<class U >
static constexpr bool has_arc_dlink_v
 
- Protected Member Functions inherited from GraphCommon< GT, Node, Arc >
void init () noexcept
 
void common_swap (GT &g) noexcept
 
template<class Predicate >
DynList< Arc * > collect_arcs_if (Predicate pred) const
 Collect all arcs matching a predicate.
 
template<class Predicate >
void remove_arcs_if (Predicate pred)
 Remove all arcs matching a predicate.
 
- Protected Attributes inherited from GraphCommon< GT, Node, Arc >
void * cookie = nullptr
 
size_t num_nodes = 0
 
size_t num_arcs = 0
 
bool digraph = false
 

Detailed Description

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
class Aleph::List_Graph< _Graph_Node, _Graph_Arc >

Graph implemented with double-linked adjacency lists.

This class manages two template parameters

  • _Graph_Node: the type of node, which previously must have been defined through of Graph_Node class.
  • _Graph_Arc: the type of arc, which previously must have been defined through of Graph_Arc class.

It is highly recommendable to use an alias for the final graph type. Some such as

using My_Graph = List_Graph<Graph_Node<My_Node_Type>, Graph_Arc<My_Arc_Type>>;

Once instantiated a List_Graph object, its nodes and arcs must be accessed through the following subclasses:

Directed or non-directed? (how and when using them)

Using of alias is very "natural". For the previously shown alias example, you could type:

My_Graph::Node * node_ptr = .... My_Graph::Arc * arc_ptr = ....

This graph can be directed or non-directed. From a functional perspective, what gives the difference between a directed graph and a non-directed one is the way for accessing to arcs given a node. Perhaps an example could help to understand better. Suppose that you have a graph g and two node pointers p and q respectively. Now, to specify an arc, you execute some such as

auto arc = g.insert_arc(p, q);

If you execute

auto my_node = g.get_connected_arc(arc, p);

Then you will get q, which is the node connected to p through arc. Now, if you execute

auto my_node = g.get_connected_arc(arc, q);

Then you will get p, which is the node connected to q through arc. In this situation you are trying g as a non-directed graph.

However, when you inserted the arc, you specified a source node and a target one. This knowledge, which is embedded in the internal data structure, can be profited by the user for treating g as a directed graph. In that case, instead of using the get_connected_node() method, you use other methods expressing the arc sense. For instance, in the previous example you could do:

auto src = g.get_src_node(arc); // source node of arc auto tgt = g.get_tgt_node(arc); // target node of arc

The class <tt>List_Digraph</tt>

Aleph-w ( \(\aleph_\omega\)) exports a derived named List_Digraph. At the functional level, there is no almost any difference with List_Graph. The only functional difference is that get_connected_node() has no any sense on List_Digraph objects. Be very careful with the fact that Aleph-w ( \(\aleph_\omega\)) does not perform any check of this. To use get_connected_node() for List_Digraph objects is an programming error.

So that, if there is no practically much difference, then, why to use List_Digraph?

Memory consumption

Probably List_Graph is the more versatile graph class of Aleph-w ( \(\aleph_\omega\)). However, its versatility is at the expense of highest memory consumption. First, the internal lists are double, not single. Second, for each arc, there is a double linked list of arc references. This implicates that the same arc information is duplicated in each involved node, the source and the target one.

At the contrary, in List_Digraph the arc references are not stored in the target node. This fact could considerably save memory.

Performance

For List_Graph all (yes, all!) operations are \(O(1)\), but, as said, this performance is achieved at the expense of memory.

For List_Digraph all operations are \(O(1)\), except node removal. In this case, since with this representation there is no direct way to know the incoming arcs, the node removal requires traversing all the arcs for checking for those incoming to the removed one. So, the node removal is \(O(E)\).

Versatility (<tt>List_Graph</tt> vs <tt>List_Digraph</tt>)

So that a guideline for choosing List_Graph vs List_Digraph is to ask if the node removal will be used. If yes, then how often? If you know that the node removal will be used several times, then prefer List_Graph; otherwise, that is, you know there are no node removals, then use List_Digraph, since it uses less memory.

Note on validations

Almost all the methods of this class do not perform any validation. This is especially delicate for those methods involved topologic changes (insertions and removals of nodes or arcs).

When a removal operation is called, this assumes that it is performed on a valid object. For example, remove_node(p) assumes that p is a valid node pointer. For valid we understand that the pointer was returned for another method of graph class and on the same graph. At this regard, is very important to be careful because no method validates if the involved object was or not created either this belongs to the graph.

See also
Graph_Node Graph_Arc Array_Graph List_SGraph
List_Digraph Path

Definition at line 425 of file tpl_graph.H.

Member Typedef Documentation

◆ Arc

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
using Aleph::List_Graph< _Graph_Node, _Graph_Arc >::Arc = _Graph_Arc

The node class type.

Definition at line 433 of file tpl_graph.H.

◆ Arc_Type

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
using Aleph::List_Graph< _Graph_Node, _Graph_Arc >::Arc_Type = typename Arc::Arc_Type

The type of data stored in the arc.

Definition at line 439 of file tpl_graph.H.

◆ CommonBase

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
using Aleph::List_Graph< _Graph_Node, _Graph_Arc >::CommonBase = GraphCommon<List_Graph<_Graph_Node, _Graph_Arc>, _Graph_Node, _Graph_Arc>

Definition at line 444 of file tpl_graph.H.

◆ GT

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
using Aleph::List_Graph< _Graph_Node, _Graph_Arc >::GT = List_Graph

Definition at line 430 of file tpl_graph.H.

◆ Node

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
using Aleph::List_Graph< _Graph_Node, _Graph_Arc >::Node = _Graph_Node

The graph type.

Definition at line 432 of file tpl_graph.H.

◆ Node_Type

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
using Aleph::List_Graph< _Graph_Node, _Graph_Arc >::Node_Type = typename Node::Node_Type

The arc class type.

The type of data stored in the node

Definition at line 436 of file tpl_graph.H.

Constructor & Destructor Documentation

◆ List_Graph() [1/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Aleph::List_Graph< _Graph_Node, _Graph_Arc >::List_Graph ( const List_Graph< _Graph_Node, _Graph_Arc > &  g)
inline

Copy constructor.

See also
ALEPH_GRAPH_COPY_MOVE_CTORS Creates a deep copy of the graph.

Definition at line 780 of file tpl_graph.H.

◆ List_Graph() [2/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Aleph::List_Graph< _Graph_Node, _Graph_Arc >::List_Graph ( List_Graph< _Graph_Node, _Graph_Arc > &&  g)
inlinenoexcept

Move constructor.

Transfers ownership from g.

Definition at line 780 of file tpl_graph.H.

◆ ~List_Graph()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
virtual Aleph::List_Graph< _Graph_Node, _Graph_Arc >::~List_Graph ( )
inlinevirtual

Destructor: all the nodes and arcs and removed and freed.

Definition at line 783 of file tpl_graph.H.

References Aleph::clear_graph().

◆ List_Graph() [3/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Aleph::List_Graph< _Graph_Node, _Graph_Arc >::List_Graph ( )
default

Construct an empty graph.

Member Function Documentation

◆ connect_arc()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
virtual Arc * Aleph::List_Graph< _Graph_Node, _Graph_Arc >::connect_arc ( Arc arc)
inlinevirtualnoexcept

Connect a previously disconnected arc to the graph.

This method serves for connecting an arc that has been disconnected with disconnect_arc() method. Once connected, the arc is again part of the graph and can be removed and freed by remove_arc() or by the destructor.

Parameters
[in]arcpointer to the arc to connect
Returns
a pointer to the connected arc

Definition at line 733 of file tpl_graph.H.

References Aleph::Dlink::append(), Aleph::List_Graph< _Graph_Node, _Graph_Arc >::arc_list, GraphCommon< GT, Node, Arc >::digraph, GraphCommon< GT, Node, Arc >::get_src_node(), GraphCommon< GT, Node, Arc >::get_tgt_node(), Aleph::maps(), and GraphCommon< GT, Node, Arc >::num_arcs.

Referenced by TEST().

◆ disconnect_arc()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
virtual void Aleph::List_Graph< _Graph_Node, _Graph_Arc >::disconnect_arc ( Arc arc)
inlinevirtualnoexcept

Disconnect an arc from graph.

This method removes an arc from the graph; that is, it does no longer belong to the graph. However, the memory is not freed.

Although the use of this method is occasional, it is not exceptional. For example, some situations require to temporarily disconnect the arc and afterward connect it again.

The disconnected arc is already for being reinserted in the graph with the connect_arc() method.

Warning
The arc remains out of graph. So, from the graph perspective, a disconnected arc does not exist longer, and it will not be freed by the graph destructor neither by remove_arc(). In fact, to call remove_arc() on a disconnected arc is an error. It is your responsibility to free a disconnected arc.
Parameters
[in]arcpointer to the arc to disconnect
See also
connect_arc(Arc * arc)

Definition at line 699 of file tpl_graph.H.

References Aleph::Dlink::del(), GraphCommon< GT, Node, Arc >::digraph, GraphCommon< GT, Node, Arc >::get_src_node(), GraphCommon< GT, Node, Arc >::get_tgt_node(), Aleph::maps(), and GraphCommon< GT, Node, Arc >::num_arcs.

Referenced by TEST().

◆ dlink_to_arc()

◆ dlink_to_arc_node()

◆ dlink_to_node()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
static Node * Aleph::List_Graph< _Graph_Node, _Graph_Arc >::dlink_to_node ( Dlink p)
inlinestaticprivatenoexcept

◆ get_arc_dlink()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Dlink & Aleph::List_Graph< _Graph_Node, _Graph_Arc >::get_arc_dlink ( )
inlinenoexcept

Return a reference to the internal arc Dlink for sorting.

This accessor, get_arc_dlink(), exposes the internal arc_list used by sort operations (e.g., sort_arcs()).

Returns
Dlink& reference to arc_list.
Exceptions
none
Note
Complexity: O(1)
Exception safety: noexcept
Intended for sorting operations; mutating the list directly can violate graph invariants if used outside that context.

Definition at line 501 of file tpl_graph.H.

References Aleph::List_Graph< _Graph_Node, _Graph_Arc >::arc_list.

◆ get_first_arc() [1/2]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Arc * Aleph::List_Graph< _Graph_Node, _Graph_Arc >::get_first_arc ( ) const
inline

Return any arc in the graph.

This method serves as an arc of depart in the graph. Some algorithms only need an initial arc which could be anyone. In these cases, this method is indicated.

Note
The idea of "first arc" does not obey any order; the method simply returns a arc.
Returns
A pointer to an arc in the graph

Definition at line 769 of file tpl_graph.H.

References ah_range_error_if, Aleph::List_Graph< _Graph_Node, _Graph_Arc >::arc_list, Aleph::List_Graph< _Graph_Node, _Graph_Arc >::dlink_to_arc(), and GraphCommon< GT, Node, Arc >::get_num_arcs().

◆ get_first_arc() [2/2]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Arc * Aleph::List_Graph< _Graph_Node, _Graph_Arc >::get_first_arc ( Node node) const
inline

Return any arc adjacent to a node.

This method serves as an arc of departure given a node. Some algorithms only need any arc adjacent to a node in order to start their computations. In these cases, this method is indicated.

Note
The idea of "first arc" does not obey any order; the method simply returns an arc. The majority of algorithms should be independent of the processing order of arcs
Returns
A pointer to an arc adjacent to node

Definition at line 595 of file tpl_graph.H.

References ah_range_error_if, Aleph::Arc_Node::arc, Aleph::List_Graph< _Graph_Node, _Graph_Arc >::dlink_to_arc_node(), and GraphCommon< GT, Node, Arc >::get_num_arcs().

Referenced by Aleph::Tarjan_Connected_Components< GT, Itor, SA >::build_path(), GraphCommon< GT, Node, Arc >::get_arc(), GraphCommon< GT, Node, Arc >::get_arc(), TEST(), TEST(), and TEST().

◆ get_first_node()

◆ get_node_dlink()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Dlink & Aleph::List_Graph< _Graph_Node, _Graph_Arc >::get_node_dlink ( )
inlinenoexcept

Return a reference to the internal node Dlink for sorting.

This accessor, get_node_dlink(), exposes the internal node_list used by sort operations (e.g., sort_nodes()).

Returns
Dlink& reference to node_list.
Exceptions
none
Note
Complexity: O(1)
Exception safety: noexcept
Intended for sorting operations; mutating the list directly can violate graph invariants if used outside that context.

Definition at line 487 of file tpl_graph.H.

References Aleph::List_Graph< _Graph_Node, _Graph_Arc >::node_list.

◆ insert_arc() [1/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Arc * GraphCommon< GT, Node, Arc >::insert_arc ( Node src,
Node tgt,
Arc_Type &&  arc_info = Arc_Type() 
)
inline

Create and insert a new arc linking two nodes and moving the received data.

Thi method firstallocates a new arc linking the nodes pointed by srcandtgt. Ifthisis a directed graph, thensrcis considered the source node andtgtthe target one. Once the arc has been effectively allocated, if possible, the data contained in arc_info` is moved to the node avoiding copy. Finally, the arc is inserted into the graph.

The pointers srcand tgt must be valid; that is, of course, they must correspond to real nodes already inserted in the graph. At this regard, no validation is done.

Remarks
If this method does not throw exception, then this always returns a valid pointer,
Parameters
[in]srcpointer to the source node.
[in]tgtpointer to the target node.
[in]arc_infothe data to be moved to the node.
Returns
a pointer to the arc already inserted into the graph
Exceptions
bad_allocif there is no enough memory.

Definition at line 1223 of file graph-dry.H.

◆ insert_arc() [2/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Arc * GraphCommon< GT, Node, Arc >::insert_arc ( Node src,
Node tgt,
const Arc_Type arc_info 
)
inline

Create and insert a new arc linking two nodes and copying data.

insert_arc() allocates a new arc linking the nodes pointed by src and tgt. If this is a directed graph, then src is considered the source node and tgt the target one. When the arc has been effectively allocated, the data contained in arc_info is copied to the node. Finally, the arc is inserted into the graph.

The pointers srcand tgt must be valid; that is, of course, they must correspond to real nodes already inserted in the graph. At this regard, no validation is done.

Remarks
If this method does not throw exception, then this always returns a valid pointer,
Parameters
[in]srcpointer to the source node.
[in]tgtpointer to the target node.
[in]arc_infothe data to be copied to the node.
Returns
a pointer to the arc already inserted into the graph
Exceptions
bad_allocif there is no enough memory.

Definition at line 1193 of file graph-dry.H.

◆ insert_arc() [3/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Arc * Aleph::List_Graph< _Graph_Node, _Graph_Arc >::insert_arc ( Node src_node,
Node tgt_node,
void a 
)
inlineprivate

Definition at line 604 of file tpl_graph.H.

References Aleph::Dlink::append(), Aleph::List_Graph< _Graph_Node, _Graph_Arc >::arc_list, GraphCommon< GT, Node, Arc >::digraph, Aleph::maps(), and GraphCommon< GT, Node, Arc >::num_arcs.

Referenced by Aleph::__find_depth_first_spanning_tree(), Aleph::__map_subgraph(), add_edge(), EulerianUndirectedTest::add_edge(), HamiltonianUndirectedTest::add_edge(), build_barbell_graph(), build_campus_network(), build_complete_graph(), build_complete_graph(), build_computer_network(), Aleph::GraphCopyWithMapping< GT, Tree >::build_copy(), build_cycle_graph(), build_cyclic_graph(), build_network_graph(), build_path_graph(), build_social_network(), Aleph::build_subgraph(), Aleph::Build_Subgraph< GT, SA >::build_subgraph(), Aleph::Find_Breadth_First_Spanning_Tree< GT, SA >::build_tree(), Aleph::Bellman_Ford< GT, Distance, Ait, NAit, SA >::build_tree(), Aleph::Find_Depth_First_Spanning_Tree< GT, SA >::build_tree(), build_tree_graph(), build_two_clusters(), build_weighted_chain(), Aleph::AStar_Min_Path< GT, Distance, Heuristic, Itor, SA, HeapT >::compute_min_paths_tree(), Aleph::Dijkstra_Min_Paths< GT, Distance, Itor, SA, HeapT >::compute_min_paths_tree(), Aleph::AStar_Min_Path< GT, Distance, Heuristic, Itor, SA, HeapT >::compute_partial_min_paths_tree(), Aleph::Dijkstra_Min_Paths< GT, Distance, Itor, SA, HeapT >::compute_partial_min_paths_tree(), Aleph::AStar_Min_Path< GT, Distance, Heuristic, Itor, SA, HeapT >::compute_partial_path(), create_chain(), create_complete_bipartite(), FindPathTest::create_complete_graph(), create_cycle(), create_cycle_graph(), create_disconnected_bipartite(), Aleph::Bellman_Ford< GT, Distance, Ait, NAit, SA >::create_dummy_node(), create_grid_graph(), FindPathTest::create_linear_graph(), create_path_graph(), create_star_graph(), create_triangle(), demo_comparison(), demo_connected_components(), demo_definition(), demo_density(), demo_eulerian_cycle(), demo_fixing_vulnerabilities(), demo_hierholzer(), demo_testing(), GraphCommon< GT, Node, Arc >::emplace_arc(), example_algorithm_comparison(), example_api_patterns(), example_basic_sccs(), example_comparison_tarjan(), example_dag(), example_lightweight_version(), example_strongly_connected(), Aleph::find_breadth_first_spanning_tree(), generate_random_graph(), Aleph::Random_Graph_Base< GT, Init_Node, Init_Arc >::insert_arc(), GraphCommon< GT, Node, Arc >::insert_arc(), GraphCommon< GT, Node, Arc >::insert_arc(), Aleph::GraphCopyWithMapping< GT, Tree >::insert_arc(), Aleph::Arcs_Index< GT, Compare, Tree, SA >::insert_in_graph(), Aleph::IndexArc< GT, Tree, SA >::insert_in_graph(), Aleph::IndexArc< GT, Tree, SA >::insert_in_graph(), Aleph::IO_Graph< GT, Load_Node, Store_Node, Load_Arc, Store_Arc, NF, AF >::load(), Aleph::IO_Graph< GT, Load_Node, Store_Node, Load_Arc, Store_Arc, NF, AF >::load_in_text_mode(), main(), Aleph::Compute_Cut_Nodes< GT, SA >::map_subgraph(), Aleph::Prim_Min_Spanning_Tree< GT, Distance, SA >::min_spanning_tree(), Aleph::Build_Grid< GT, Operation_On_Node, Operation_On_Arc >::operator()(), Aleph::Kruskal_Min_Spanning_Tree< GT, Distance, SA >::paint_min_spanning_tree(), parse_arc_definition(), Aleph::Xml_Graph< GT, Node_Reader, Arc_Reader, Node_Writer, Arc_Writer >::read_graph(), AStarBasicTest::SetUp(), AStarGridTest::SetUp(), AStarDijkstraModeTest::SetUp(), AStarHeapTest< HeapTag >::SetUp(), CookieGuardTest::SetUp(), GraphFunctionalTest::SetUp(), GraphTraverseTest::SetUp(), DisconnectedGraphTest::SetUp(), TreeGraphTest::SetUp(), CyclicGraphTest::SetUp(), SimpleGraphTest::SetUp(), IOGraphTest::SetUp(), GraphArcRemovalTest::SetUp(), GraphIteratorTest::SetUp(), GraphMoveTest::SetUp(), PathTest::SetUp(), MatGraphTestBase::SetUp(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), test_cross_comparison(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), TEST_F(), test_ks_single_edge(), test_ks_triangle(), test_performance_ks(), test_performance_sw(), test_sw_complete_k4(), test_sw_single_edge(), test_sw_triangle_weighted(), test_sw_two_heavy_clusters(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), and TYPED_TEST().

◆ insert_node() [1/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Node * GraphCommon< GT, Node, Arc >::insert_node ( const Node_Type node_info)
inline

Allocate a new node, set by copy its data content and insert it into the graph.

This method perform several actions. First, it allocates memory for a graph node. Then the data node_info is copied to the data associated to the node. This copy is done via the copy constructor and assign operator. So, these functionalities must be present for the class Node_Type. Finally, the node is topologically inserted into the graph.

Remarks
If this method does not throw exception, then this always returns a valid pointer,
Parameters
[in]node_infoinfo to copy to the new node. The copy constructor and the assign operator must be defined for the class Node_Type.
Returns
a pointer to the new inserted node.
Exceptions
bad_allodif there is no enough memory

Definition at line 1116 of file graph-dry.H.

◆ insert_node() [2/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
virtual Node * Aleph::List_Graph< _Graph_Node, _Graph_Arc >::insert_node ( Node node)
inlinevirtualnoexcept

Insertion of a node already allocated.

This method takes a pointer to a node already allocated and inserts it in the graph.

The node allocation and its life in memory are the user's responsibility. At this regard, take into account that the graph destructor and remove_method() will assume that the nodes were allocated with new operator, and consequently it will call to delete for deallocating. So, it is very dangerous to use nodes whose memory does not come from new.

Note
Since that it is programmer responsibility to allocate memory for the node, and in addition, the graph destructor and the remove_noe() will call delete operator, it is preferable and highly recommended to use any other overloaded version of insert_node() which automatically allocates the node's memory. In fact, those overloaded methods invoke this version.
Parameters
[in]nodea pointer to an already allocated node.
Returns
the node pointer

Reimplemented in Aleph::Euclidian_Graph< __Euclidian_Node, __Euclidian_Arc >.

Definition at line 524 of file tpl_graph.H.

References Aleph::Dlink::append(), and GraphCommon< GT, Node, Arc >::num_nodes.

Referenced by Aleph::__find_depth_first_spanning_tree(), Aleph::__map_subgraph(), EulerianUndirectedTest::add_node(), HamiltonianUndirectedTest::add_node(), build_barbell_graph(), build_campus_network(), build_complete_graph(), build_complete_graph(), build_computer_network(), Aleph::GraphCopyWithMapping< GT, Tree >::build_copy(), build_cycle_graph(), build_cyclic_graph(), build_network_graph(), build_path_graph(), build_social_network(), Aleph::build_subgraph(), Aleph::Build_Subgraph< GT, SA >::build_subgraph(), Aleph::Find_Depth_First_Spanning_Tree< GT, SA >::build_tree(), Aleph::Find_Breadth_First_Spanning_Tree< GT, SA >::build_tree(), Aleph::Bellman_Ford< GT, Distance, Ait, NAit, SA >::build_tree(), Aleph::Find_Depth_First_Spanning_Tree< GT, SA >::build_tree(), build_tree_graph(), build_two_clusters(), build_weighted_chain(), Aleph::AStar_Min_Path< GT, Distance, Heuristic, Itor, SA, HeapT >::compute_min_paths_tree(), Aleph::Dijkstra_Min_Paths< GT, Distance, Itor, SA, HeapT >::compute_min_paths_tree(), Aleph::AStar_Min_Path< GT, Distance, Heuristic, Itor, SA, HeapT >::compute_partial_min_paths_tree(), Aleph::Dijkstra_Min_Paths< GT, Distance, Itor, SA, HeapT >::compute_partial_min_paths_tree(), Aleph::AStar_Min_Path< GT, Distance, Heuristic, Itor, SA, HeapT >::compute_partial_path(), Aleph::Compute_Cut_Nodes< GT, SA >::create_and_map_node(), create_chain(), create_complete_bipartite(), FindPathTest::create_complete_graph(), create_cycle(), create_cycle_graph(), create_disconnected_bipartite(), Aleph::Bellman_Ford< GT, Distance, Ait, NAit, SA >::create_dummy_node(), create_grid_graph(), FindPathTest::create_linear_graph(), Aleph::Random_Graph< GT, Init_Node, Init_Arc >::create_nodes_and_initialize_arc_index(), Aleph::Random_Digraph< GT, Init_Node, Init_Arc >::create_nodes_and_initialize_arc_index(), create_path_graph(), create_star_graph(), create_triangle(), demo_comparison(), demo_connected_components(), demo_definition(), demo_density(), demo_eulerian_cycle(), demo_hierholzer(), demo_testing(), GraphCommon< GT, Node, Arc >::emplace_node(), example_algorithm_comparison(), example_api_patterns(), example_basic_sccs(), example_comparison_tarjan(), example_dag(), example_lightweight_version(), example_strongly_connected(), Aleph::find_breadth_first_spanning_tree(), Aleph::find_depth_first_spanning_tree(), find_or_create(), generate_random_graph(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::insert_in_graph(), Aleph::IndexNode< GT, Compare, Tree, SN >::insert_in_graph(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::insert_in_graph(), Aleph::IndexNode< GT, Compare, Tree, SN >::insert_in_graph(), GraphCommon< GT, Node, Arc >::insert_node(), GraphCommon< GT, Node, Arc >::insert_node(), Aleph::GraphCopyWithMapping< GT, Tree >::insert_unmapped_node(), Aleph::GraphCopyWithMapping< GT, Tree >::insert_unmapped_node(), Aleph::IO_Graph< GT, Load_Node, Store_Node, Load_Arc, Store_Arc, NF, AF >::load(), Aleph::IO_Graph< GT, Load_Node, Store_Node, Load_Arc, Store_Arc, NF, AF >::load_in_text_mode(), main(), Aleph::map_subgraph(), Aleph::Init_Prim_Info< GT >::operator()(), Aleph::Build_Grid< GT, Operation_On_Node, Operation_On_Arc >::operator()(), Aleph::Kruskal_Min_Spanning_Tree< GT, Distance, SA >::paint_min_spanning_tree(), parse_graph_definition(), Aleph::Xml_Graph< GT, Node_Reader, Arc_Reader, Node_Writer, Arc_Writer >::read_graph(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::search_or_insert_in_graph(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::search_or_insert_in_graph(), AStarBasicTest::SetUp(), AStarGridTest::SetUp(), AStarDijkstraModeTest::SetUp(), AStarHeapTest< HeapTag >::SetUp(), CookieGuardTest::SetUp(), GraphFunctionalTest::SetUp(), GraphTraverseTest::SetUp(), DisconnectedGraphTest::SetUp(), TreeGraphTest::SetUp(), CyclicGraphTest::SetUp(), SimpleGraphTest::SetUp(), IOGraphTest::SetUp(), GraphNodeRemovalTest::SetUp(), GraphArcRemovalTest::SetUp(), GraphIteratorTest::SetUp(), GraphMoveTest::SetUp(), PathTest::SetUp(), MatGraphTestBase::SetUp(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), TEST(), test_cross_comparison(), TEST_F(), TEST_F(), TEST_F(), test_ks_single_edge(), test_ks_triangle(), test_performance_ks(), test_performance_sw(), test_sw_complete_k4(), test_sw_empty_graph(), test_sw_single_edge(), test_sw_triangle_weighted(), test_sw_two_heavy_clusters(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), TYPED_TEST(), and TYPED_TEST().

◆ insert_node() [3/3]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
Node * GraphCommon< GT, Node, Arc >::insert_node ( Node_Type &&  node_info = Node_Type())
inline

Allocate a new node, set by moving its data content and insert it into the graph.

This method perform several actions. First, it allocates memory for a graph node. Then the data node_info is moved to the data associated to the node. This movement is done via the move constructor and move assign operator. So, these functionalities must be present for the class Node_Type. Finally, the node is topologically inserted into the graph.

Remarks
If this method does not throw exception, then this always returns a valid pointer,
Parameters
[in]node_infoinfo to move to the new node. The move constructor and the move assign operator must be defined for the class Node_Type.
Returns
a pointer to the new inserted node.
Exceptions
bad_allodif there is no enough memory.

Definition at line 1140 of file graph-dry.H.

◆ operator=() [1/2]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
List_Graph & Aleph::List_Graph< _Graph_Node, _Graph_Arc >::operator= ( const List_Graph< _Graph_Node, _Graph_Arc > &  g)
inline

Copy assignment.

Replaces contents with a deep copy of g.

Definition at line 780 of file tpl_graph.H.

◆ operator=() [2/2]

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
List_Graph & Aleph::List_Graph< _Graph_Node, _Graph_Arc >::operator= ( List_Graph< _Graph_Node, _Graph_Arc > &&  g)
inlinenoexcept

Move assignment.

Transfers ownership from g.

Definition at line 780 of file tpl_graph.H.

◆ remove_arc()

◆ remove_node()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
virtual void Aleph::List_Graph< _Graph_Node, _Graph_Arc >::remove_node ( Node node)
inlinevirtualnoexcept

Remove a node from the graph and free its memory.

This method removes all the incoming and outcoming arcs referred to the node and frees the memory. Then removes the node from the graph and frees its memory. All the memory occupied by the arcs related to the node and the node itself is freed.

The method takes \(O(1)\) on List_Graph objects and \(O(E)\) on List_Digraph objects**.

Parameters
[in]nodeto be removed and freed

Definition at line 543 of file tpl_graph.H.

References GraphCommon< GT, Node, Arc >::digraph, Aleph::List_Graph< _Graph_Node, _Graph_Arc >::dlink_to_arc_node(), GraphCommon< GT, Node, Arc >::get_src_node(), GraphCommon< GT, Node, Arc >::get_tgt_node(), Aleph::HTList::is_empty(), Aleph::maps(), GraphCommon< GT, Node, Arc >::num_nodes, Aleph::List_Graph< _Graph_Node, _Graph_Arc >::remove_arc(), GraphCommon< GT, Node, Arc >::remove_arcs_if(), and Aleph::List_Graph< _Graph_Node, _Graph_Arc >::void_to_arc().

Referenced by Aleph::clear_graph(), Aleph::Bellman_Ford< GT, Distance, Ait, NAit, SA >::create_dummy_node(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::insert_in_graph(), Aleph::IndexNode< GT, Compare, Tree, SN >::insert_in_graph(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::insert_in_graph(), Aleph::IndexNode< GT, Compare, Tree, SN >::insert_in_graph(), Aleph::Bellman_Ford< GT, Distance, Ait, NAit, SA >::remove_dummy_node(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::remove_from_graph(), Aleph::IndexNode< GT, Compare, Tree, SN >::remove_from_graph(), Aleph::GraphCopyWithMapping< GT, Tree >::remove_node(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::search_or_insert_in_graph(), Aleph::Nodes_Index< GT, Compare, Tree, SN >::search_or_insert_in_graph(), TEST(), TEST(), TEST(), and TEST().

◆ swap()

◆ void_to_arc()

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
static Arc * Aleph::List_Graph< _Graph_Node, _Graph_Arc >::void_to_arc ( Arc_Node arc_node)
inlinestaticprivatenoexcept

Definition at line 469 of file tpl_graph.H.

References Aleph::maps().

Referenced by Aleph::List_Graph< _Graph_Node, _Graph_Arc >::remove_node().

Friends And Related Symbol Documentation

◆ GraphCommon< List_Graph< _Graph_Node, _Graph_Arc >, _Graph_Node, _Graph_Arc >

template<typename _Graph_Node = Graph_Node<unsigned long>, typename _Graph_Arc = Graph_Arc<unsigned long>>
friend class GraphCommon< List_Graph< _Graph_Node, _Graph_Arc >, _Graph_Node, _Graph_Arc >
friend

Definition at line 284 of file tpl_graph.H.

Member Data Documentation

◆ arc_list

◆ node_list


The documentation for this class was generated from the following file: