Aleph-w 3.0
A C++ Library for Data Structures and Algorithms
Loading...
Searching...
No Matches
SmallDomains Struct Reference
Inheritance diagram for SmallDomains:
[legend]
Collaboration diagram for SmallDomains:
[legend]

Public Types

using V1 = Vector< char, int >
 
using V2 = Vector< string, int >
 
using Mat1 = Matrix< char, string, int >
 
using Mat2 = Matrix< string, char, int >
 

Public Attributes

AlDomain< charrd = { 'a', 'b', 'c', 'd', 'e' }
 
AlDomain< string > cd = { "A", "B", "C", "D" }
 
V1 v1_zero = { rd }
 
V1 v1 = { rd, range<int>(rd.size()) }
 
V1 v1_odd
 
V1 v1_even
 
V2 v2_zero = { cd }
 
V2 v2 = { cd, range<int>(cd.size()) }
 
V2 v2_odd
 
V2 v2_even
 
Mat1 m1_zero = { rd, cd }
 
Mat1 m1_one
 
Mat1 m1_odd = Mat1::create_by_rows(rd, rep<V2>(rd.size(), v2_odd))
 
Mat1 m1_even = Mat1::create_by_rows(rd, rep<V2>(rd.size(), v2_even))
 
Mat2 m2_zero = { cd, rd }
 
Mat2 m2_one
 
Mat2 m2_odd = Mat2::create_by_columns(rd, rep<V2>(cd.size(), v2_odd))
 
Mat2 m2_even = Mat2::create_by_columns(rd, rep<V2>(cd.size(), v2_even))
 

Detailed Description

Definition at line 47 of file al-matrix.cc.

Member Typedef Documentation

◆ Mat1

Definition at line 53 of file al-matrix.cc.

◆ Mat2

Definition at line 54 of file al-matrix.cc.

◆ V1

Definition at line 51 of file al-matrix.cc.

◆ V2

Definition at line 52 of file al-matrix.cc.

Member Data Documentation

◆ cd

AlDomain<string> SmallDomains::cd = { "A", "B", "C", "D" }

Definition at line 50 of file al-matrix.cc.

◆ m1_even

Mat1 SmallDomains::m1_even = Mat1::create_by_rows(rd, rep<V2>(rd.size(), v2_even))

Definition at line 74 of file al-matrix.cc.

◆ m1_odd

Mat1 SmallDomains::m1_odd = Mat1::create_by_rows(rd, rep<V2>(rd.size(), v2_odd))

Definition at line 73 of file al-matrix.cc.

◆ m1_one

Mat1 SmallDomains::m1_one
Initial value:
= { rd, cd, rd.maps<DynList<int>>([&] (auto)
{ return range<int>(cd.size()); }) }
DynList< T > maps(const C &c, Op op)
Classic map operation.
AlDomain< char > rd
Definition al-matrix.cc:49
AlDomain< string > cd
Definition al-matrix.cc:50

Definition at line 71 of file al-matrix.cc.

◆ m1_zero

Mat1 SmallDomains::m1_zero = { rd, cd }

Definition at line 70 of file al-matrix.cc.

◆ m2_even

Mat2 SmallDomains::m2_even = Mat2::create_by_columns(rd, rep<V2>(cd.size(), v2_even))

Definition at line 80 of file al-matrix.cc.

◆ m2_odd

Mat2 SmallDomains::m2_odd = Mat2::create_by_columns(rd, rep<V2>(cd.size(), v2_odd))

Definition at line 79 of file al-matrix.cc.

◆ m2_one

Mat2 SmallDomains::m2_one
Initial value:
= { cd, rd, cd.maps<DynList<int>>([&] (auto)
{ return range<int>(cd.size()); }) }

Definition at line 77 of file al-matrix.cc.

◆ m2_zero

Mat2 SmallDomains::m2_zero = { cd, rd }

Definition at line 76 of file al-matrix.cc.

◆ rd

AlDomain<char> SmallDomains::rd = { 'a', 'b', 'c', 'd', 'e' }

Definition at line 49 of file al-matrix.cc.

◆ v1

V1 SmallDomains::v1 = { rd, range<int>(rd.size()) }

Definition at line 57 of file al-matrix.cc.

◆ v1_even

V1 SmallDomains::v1_even
Initial value:
= { rd, range<int>(rd.size()).
maps([] (auto i) { return (i % 2) == 0 ? 0 : 1; }) }

Definition at line 60 of file al-matrix.cc.

◆ v1_odd

V1 SmallDomains::v1_odd
Initial value:
= { rd, range<int>(rd.size()).
maps([] (auto i) { return (i % 2) == 0 ? 1 : 0; }) }

Definition at line 58 of file al-matrix.cc.

◆ v1_zero

V1 SmallDomains::v1_zero = { rd }

Definition at line 56 of file al-matrix.cc.

◆ v2

V2 SmallDomains::v2 = { cd, range<int>(cd.size()) }

Definition at line 64 of file al-matrix.cc.

◆ v2_even

V2 SmallDomains::v2_even
Initial value:
= { cd, range<int>(cd.size()).
maps([] (auto i) { return (i % 2) == 0 ? 0 : 1; }) }

Definition at line 67 of file al-matrix.cc.

◆ v2_odd

V2 SmallDomains::v2_odd
Initial value:
= { cd, range<int>(cd.size()).
maps([] (auto i) { return (i % 2) == 0 ? 1 : 0; }) }

Definition at line 65 of file al-matrix.cc.

◆ v2_zero

V2 SmallDomains::v2_zero = { cd }

Definition at line 63 of file al-matrix.cc.


The documentation for this struct was generated from the following file: